Суббота 18 ноября 2017

Все о светодиодах: история открытия, устройство, технология изготовления, параметры, срок службы и др.


1. Каков все-таки средний срок службы светодиодов?

Валить все типы светодиодов в одну кучу и рассматривать их одинаково нельзя. Срок службы напрямую зависит от типа светодиода, подаваемого на него тока, охлаждения кристалла (chip) светодиода, состава и качества кристалла, компоновки и сборки в целом.

 

Считается, что светодиоды исключительно долговеч­ны. Но это не совсем так. Чем больший ток пропуска­ется через светодиод, тем вы­ше  температура и тем быстрее наступает старение (деградация) кристалла. И чем больше тепла вы передадите с подложки светодиода на радиатор тем дольше он будет работать. Поэтому светодиодные сборки с мощными светодиодами требуют пассивного (монтаж на алюминиевую плату и радиатор) или активного (кулер, вентилятор) охлаждения.

При достаточном охлаждении светодиоды можно "разогнать" - подать максимальный рекомендованный производителем ток.

Поэтому априори, срок службы у мощных светодио­дов короче, чем у маломощных индикаторных. Старение выражается в первую очередь в уменьшении яркости. 
В светодиодах мощностью от 1Вт (рабочий ток 0,350А) и более мощных, тепловыделение гораздо обильнее, чем в 5мм. светодиодах, рассчитанных на ток 0,02А. По светоотдаче 1шт. светодиод 1Вт заменяет около 50 светодиодов типа "5мм". но и греется во много раз сильнее. 

 

2. Почему у белых светодиодов наименьший срок службы?

К сожалению, соединений, излучающих белый свет, никто еще не придумал. Основой LED белого цвета свечения является структура InGaN, излучающая на длине волны 470nm (синий цвет) и нанесенный сверху на нее люминофор (специальный состав), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтый части. Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Люминофор ухудшает тепловые характеристики светодиода, поэтому срок службы сокращается. Сейчас мировые производители изобретают новые и новые варианты эффективного нанесения люминофора.

Большинство мощных светодиодов служат в районе 50.000 - 80.000 часов. Много это или мало?

50.000 часов это:

24 часа в день       5.7 лет
18 часов в день     7.4 лет
12 часов в день   11.4 лет
  8 часов в день   17.1 лет  

 3. Греются ли светодиоды?...

Везде говорят что светодиоды практически не греются. Так почему светодиодным приборам нужен теплоотвод и что будет если теплоотвода нет?

В светодиоде светится так называемый p-n переход кристалла. Грубо говоря, это место где один тип металла (-p) соединяется с другим типом (-n).  Задача – найти такое сочетание различных проводников, чтобы из этой зоны с минимальными потерями выходило как можно больше света.

И вот здесь начинаются проблемы. Идеальной комбинации -p и -n проводников пока еще не найдено, да и навряд ли найдут, и потери, хотим мы того или нет, – всегда будут. Поэтому вместе с частичками видимого света излучается еще и небольшое количество тепла. В прошлом, когда светодиоды были настолько тусклыми, что использовались лишь в индикации, это испускаемое тепло никто и не считал – столь ничтожно малым оно было.

Сейчас же, с появлением мощных и сверхмощных светодиодов соотношение света и тепла, излучаемое кристаллом осталось прежним, но теперь оно уже более ощутимое. Для наглядности посмотрите на обычную рядовую микросхему. Допустим, это чип размером 1 на 1 см. Чем больше эта микросхема выполняет задач, тем сильнее она греется. Но если это простая микросхема, теплоотводом может служить и сам корпус микросхемы, а также металлические выводы-контакты, которыми она припаяна к плате. Если же мы хотим внутри такой же микросхемы расположить в миллионы раз больше полупроводниковых элементов и заставить эту микросхему выполнять в миллионы раз больше операций – выделение тепла возрастет во много раз и нам потребуется ее охлаждать принудительно. Чтобы далеко не ходить, посмотрите на любой из ныне существующих компьютерных процессоров – они все снабжены алюминиевым или медным радиатором с принудительным обдувом вентилятором.

Примерно тоже самое происходит и в светодиоде. Когда мы с одной и той же площади чипа пытаемся «выжать» больше света, пропорционально растет количество выделяемого тепла внутри самого кристалла. И чтобы его отводить, нужно охлаждение.

Так, мощным светодиодам типа «пиранья» в качестве теплоотвода достаточно своего корпуса и печатной платы, на которую крепится светодиод. А вот для сверхмощного светодиода уже потребуется дополнительное охлаждение в виде радиатора. Но откуда же возникает это тепло? В светодиоде, как уже говорилось, существуют потери во время преобразования электричества в свет. Но часть этого света (фотонов) остается внутри кристалла. К кристаллам, где выходит относительно много света и мало остается внутри, применительно определение «высокий квантовый выход». Если же светодиод сам по себе не достаточно яркий и на один ватт подаваемого напряжения приходится относительно мало «выходных» люмен, то здесь применительно определение «кристалл с низким квантовым выходом».


Так что у любого среднестатистического светодиода температура чипа всегда растет вместе с его мощностью. Типичная рабочая температура производимых на сегодняшний день светодиодов составляет от 50°С до 120°С, а с учетом постоянного развития технологий в ближайшем будущем может достигнуть и 200°С.

Если мощные светодиоды объединены в некую сборку, да еще и установлены в герметичный корпус, то нагрев становится значительным. И если не происходит отвод тепла, полупроводниковый переход перегревается, отчего изменяются характеристики кристалла, и через некоторое время светодиод может выйти из строя. Так что очень важно строго контролировать количество тепла и обеспечивать эффективный теплоотвод. Тепловые характеристики приборов просчитываются уже на стадии проектирования, что исключает любые проблемы в эксплуатации.

 Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо разли­чать температуру на поверхности кристалла и в облас­ти p-n-перехода. Грубо говоря, это место где один тип металла (-p) соединяется с другим типом (-n). От первой зависит срок службы, от второй — световой выход. В целом с повышением тем­пературы p-n-перехода яркость светодиода падает, по­тому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

 Для примера на печатной плате были размещены светодиоды фирмы Cree. На рисунке 7 показаны результаты, демонстрирующие температуру без радиатора (слева) и с радиатором (справа).

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, си­них и белых.


4. Чем отличается полноцветный RGB светодиод от одноцветного?

В полноцветном светодиоде на одной подложке установлены независимые кристаллы трех цветов свечения (R+G+B), а монохромный светодиод содержит кристалл(ы) какого-либо одного цвета свечения.
 


5. Как регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регули­рованию, но не за счет снижения напряжения пита­ния — этого-то как раз делать нельзя, — а так называе­мым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляю­щий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером упра­вления цветом RGB-матрицы).

Метод ШИМ заключа­ется в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сиг­нала должна составлять от сотен до тысяч герц, а ши­рина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет.

 

6. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов све­та на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый вы­ход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний кван­товый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего кван­тового выхода для красных светодиодов составляет 55%, а ддя синих — 35%.Внешний квантовый выход — одна из основных ха­рактеристик эффективности светодиода.

 

7. Какие на сегодняшний день существуют технологии изготовления светодиодов?

В целом технология выглядит так: в "реактор", (установку эпитаксиального роста) устанавливают пластины из искусственного сапфира. Затем подают газовую смесь. Основание с размещенными на нем пластинами вращается в реакторе со скоростью от 1000 об./мин. В процессе вращения атомы газа "прилипают" к поверхности кристаллической подложки, образуя десятки слоев. Получается кристалл светодиода толщиной в сотни микрон.
Далее идет планарная об­работка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для кон­тактных выводов. Затем пластины, разделяют на отдельные кристаллы. Пленку, выращенную на одной под­ложке, можно разрезать на несколько тысяч чипов раз­мерами от 0,24x0,24 до 1x1 мм2. Чем больше площадь кристалла тем больше света он способен излучать при прохождении через него тока.

Называется тех­нология "металлоорганическая эпитаксия". Для этого процесса необходимы особо чистые газы. В современных реакторах предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращивае­мых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцеп­торами, чтобы создать p-n-переход с большой концентра­цией электронов в n-области и дырок — в р-области.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в кор­пусе, сделать контактные выводы, изготовить оптиче­ские покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый свето-диод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нуж­ный телесный угол. Около половины стоимости светоди-ода определяется этими этапами высокой технологии.

Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стои­мость установок для эпитаксиального роста полупроводни­ковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долла­ров. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необ­ходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой производственной культуры.

Необходимость повышения мощности для увеличе­ния светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной тех­нологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по техноло­гии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиа­тора — в этом случае она делается из металла. Так созда­ются светодиодные модули, которые могут иметь линей­ную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных гало­генных, призванные им на замену. А для мощных све­тильников и прожекторов изготавливаются светодиод­ные сборки на массивном радиаторе.

Раньше в светодиодных платах было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая систе­ма, направляющая световой поток в нужный телесный угол, играет все большую роль.

 

8. Где на сегодняшний день применяются светодиоды и каковы их перспективы?

Cветодиодное освещение целесообразно применять в тех случаях, где требуется высокая надежность, где обслуживание световой установки слишком дорого и требует спецтехники или работ альпинистов,  где нужно применять цветодинамические решения, где требуется энергоэффективное решение, например при питании от разнообразных генераторов.

Обратная сторона медали: светодиодные светильники идеально подойдут для неяркой, но эффектной подсветки. Этот конкретный пример по степени потребления электроэнергии на 90% экономичнее самых маленьких 15Вт галогеновых лампочек.


Каждый год светоотдача и эффективность светодиодов увеличивается на 30-50%. По состоянию на 2008 год светодиодные светильники уже чаще ламп применяются в архитектурном, декоративном, ландшафтном, подводном освещении, праздничной иллюминации, шоу-бизнесе, а также в специальных приложениях - медицине и растениеводстве, например.

 В обозримом будушем скорее всего светодиоды вытеснят лампы в дежурном освещении мест общественного пользования - подъездах жилых домов, световых указателях и т.д. А также на транспорте - в самолетах, поездах, автомобилях. А  по мере развития технологии и удешевления производства, дело уже доходит до ночного освещения автомобильных дорог и улиц. Все это даст существенную экономию энергоресурсов в национальных масштабах.

 

9. Какие мировые компании производят светодиоды?

 Список лидирующих производителей в мире:
- «CREE» (США);
- «Osram» (Германия);
- «Lumieleds Luxeon» (США);
- «Seoul Semiconductor» (Ю.Корея);
- «Nincha» (Япония);
- «Epistar» (Тайвань);
- «Edisson» (Тайвань);
- «Prolight Opto» (Тайвань).

 Ежегодно, световой поток самого производительного светодиода каждого из мировых брэндов возрастает стабильно на 20-30%. Стоимость 100Лм светового потока падает на 10-15% в год, а отсюда и стабильное ежегодное падение цен на светодиодные осветительные приборы.

Цена светодиодного прибора, безусловно, зависит от стоимости самих светодиодов. Светодиоды при серийном производстве светотехнических изделий составляют самую большую строку в бюджете изготовления светодиодных приборов.

10. Кто изобрел светодиод?

Еще в 1907 году было впервые отмечено слабое свечение, испускаемое карбидокремниевыми кристаллами вследствие неизвестных тогда электронных превращений. В 1923 году наш соотечественник, сотрудник Нижегородской радиолаборатории Олег Лосев отмечал это явление во время проводимых им радиотехнических исследований с полупроводниковыми детекторами, однако интенсивность наблюдаемых излучений была столь незначительной, что Российская научная общественность тогда всерьез не интересовалась этим феноменом.
Через пять лет Лосев специально занялся исследованиями этого эффекта и продолжал их почти до конца жизни (О.В. Лосев скончался в блокадном Ленинграде в январе 1942 года, не дожив до 39 лет). Открытие "Losev Licht", как назвали эффект в Германии, где Лосев публиковался в научных журналах, стало мировой сенсацией. И после изобретения транзистора (в 1948 году) и создания теории p-n-перехода (основы всех полупроводников) стала понятна природа свечения.

В 1962 году американец Ник Холоньяк продемонстрировал работу первого светодиода, а вскоре после этого сообщил о начале полупромышленного выпуска светодиодов.

Светодиод (англ. light emission diode – LED)  является полупроводниковым прибором, его активная часть, называемая «кристалл» или «чип», как и у обычных диодов состоит из двух типов полупроводника – с электронной (n-типа) и с дырочной (p-типа) проводимостью. В отличие же от обычного диода в светодиоде на границе полупроводников разного типа существует определенный энергетический барьер, препятствующий рекомбинации электронно-дырочных пар. Электрическое поле, приложенное к кристаллу, позволяет преодолеть этот барьер и происходит рекомбинация (аннигиляция) пары с излучением кванта света. Длина волны излучаемого света определяется величиной энергетического барьера, который, в свою очередь, зависит от материала и структуры полупроводника, а также наличия примесей.

Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

 

11. Устройство светодиодов.

Основные современные материалы, используемые в кристаллах светодиодов:

InGaN –  синие, зеленые и ультрафиолетовые светодиоды высокой яркости;

AlGaInP - желтые, оранжевые и красные светодиоды высокой яркости;

AlGaAs -  красные и инфракрасные светодиоды;

GaP – желтые и зеленые светодиоды.

 
устройство 5мм.- светодиодов (слева) и мощных (справа) светодиодов

Устройство светодиодов различных типов упрощенно представлено на рисунках. Свет, излучаемый полупроводниковым кристаллом, попадает в миниатюрную оптическую систему, образованную сферическим рефлектором и самим прозрачным корпусом диода, имеющим форму линзы. Изменяя конфигурацию рефлектора и линзы, устанавливая вторичные линзы, добиваются необходимой направленности излучения. 


трехкристалльный RGB светодиод под микроскопом

 

     Кроме светодиодов лампового типа (3,5,10мм, их форма действительно напоминает миниатюрную лампочку с двумя выводами),  в последнее время все большее распространение получают SMD - светодиоды. Они совершенно иной конструкции, отвечающей требованиям технологии автоматического монтажа на поверхность печатной платы (surface mounted devices – SMD).
А сверхяркие светодиоды такого типа называются эммитеррами (emitter, англ. "излучатель").
SMD светодиоды имеют более компактные размеры, допускают автоматическую расстановку и пайку на поверхность платы без ручной сборки. Некоторые производители светодиодов выпускают специальные SMD-диоды, содержащие в одном корпусе три кристалла, излучающие свет трех основных цветов – красный, синий и зеленый.  Это позволяет получить при смешении их излучения всю цветовую гамму, включая белый цвет, при ультракомпактных размерах.

Яркость светодиода характеризуется световым потоком (Люмены) и осевой силой света (канделлы), а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов.

Цвет, как обычно, определяется координатами цветности,  цветовой температурой белого света (Кельвин), а также длиной волны излучения (нанометры).

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности (характеристика "Люмен/Ватт"). Также интересной  характеристикой оказывается цена одного люмена ($/Люмен).


По силе света светодиоды делятся на три основные группы:

- Светодиоды ультравысокой яркости, мощностью от 1W (Ultra-high brightness LEDs) – сотни канделл;

- Светодиоды высокой яркости, мощнотью до 20 mW (High brightness LEDs) – сотни и тысячи милликанделл;

- Светодиоды стандартной яркости (Standard brightness LEDs) – десятки милликанделл.

     Итак, любой светодиод состоит из одного или нескольких кристаллов, размещенных в корпусе с контактными выводами и оптической системы (линзы), формирующей световой поток. Длина волны излучения кристалла (цвет) зависит от материала полупроводника и от легирующих примесей. Биновка (wavelength bin) кристаллов по длине волны излучения происходит при их изготовлении. В партии поставки на современном производстве отбираются близкие по спектру излучения кристаллы.

     Широкий диапазон оптических характеристик, миниатюрные размеры и гибкие возможности по дискретному управлению обеспечили применение светодиодов для создания самых различных световых приборов и изделий. Светоди­од излучает в узкой части спектра, на определенной длине волны его цвет чист, что особенно ценят дизайнеры.


Современное разнообразие светодиодов и так называемых светодиодных сборок делает часто нетривиальной задачу выбора подходящих комплектующих для реализации тех или иных светотехнических приложений. Основные параметры светодиодов – цветность, сила света и угол обзора по половинной мощности излучения. Но для профессионального выбора, оценки качества и эффективности изделий необходим учет многих других характеристик светодиодов. Ниже приведен их краткий перечень.
Значение характеристик и параметров в конкретном случае зависит от типа кристалла, конструкции и размера рефлектора, структуры и толщины люминофорного покрытия, методов формирования оптической линзы и других факторов.

Вход пользователей

Авторские права принадлежат "XOPC".